Zaɓi Harshe

Lokaci Mai Dorewa-Aware Neuromorphic Computing tare da NVM

Binciken matsalolin dorewar rayuwa a cikin lissafin neuromorphic tare da ƙwaƙwalwar ajiya mara-sauƙi, mai mai da hankali kan NBTI da TDDB hanyoyin gazawa da dorewa-aikin ciniki-kashe.
hashpowertoken.org | PDF Size: 0.6 MB
Kima: 4.5/5
Kimarku
Kun riga kun ƙididdige wannan takarda
Murfin Takardar PDF - Lokaci Mai Dorewa-Aware Neuromorphic Computing tare da NVM

Teburin Abubuwan Ciki

Haɓaka Dorewa

3.2x

Haɓaka tsawon rai tare da shimfiɗa na lokaci-lokaci

Tasirin Aiki

15%

Matsakaicin daidaiton ciniki

Matsi na Ƙarfin Lantarki

1.8V

Ƙarfin lantarki mai aiki yana haifar da tsufa

1. Gabatarwa

Lissafin Neuromorphic tare da ƙwaƙwalwar ajiya mara-sauƙi (NVM) yana wakiltar sauyin tsari a cikin kayan aikin koyon na'ura, yana ba da gagarumin ci gaba a cikin aiki da ingantaccen kuzari don lissafin tushen spike. Duk da haka, manyan ƙarfin lantarki da ake buƙata don sarrafa NVM kamar ƙwaƙwalwar ajiya mai canzawa (PCM) suna haɓaka tsufa a cikin da'irar neuron na CMOS, suna barazana ga dogon lokacin amincin kayan aikin neuromorphic.

Wannan aikin yana magance matsalar matuƙar tsawon rai a cikin tsarin neuromorphic, yana mai da hankali kan hanyoyin gazawa kamar rashin kwanciyar hankali na yanayin zafi mara kyau (NBTI) da rushewar dielectric na lokaci (TDDB). Muna nuna yadda yanke shawara na tsarin-tsarin, musamman dabarun shimfiɗa na lokaci-lokaci, zasu iya haifar da muhimman ciniki-tsakanin dorewa da aiki a cikin aikace-aikacen koyon na'ura na zamani.

Muhimman Fahimta

  • Manyan ayyukan NVM na ƙarfin lantarki suna haɓaka tsufar CMOS a cikin da'irar neuron
  • NBTI da TDDB sune manyan hanyoyin gazawa da ke shafar dorewar tsawon rai
  • Shimfiɗa na lokaci-lokaci yana ba da damar gagarumin haɓaka dorewa tare da cinikin aiki mai iya sarrafawa
  • Haɓaka fasaha yana ƙara matsalolin dorewa a cikin kayan aikin neuromorphic

2. Tsarin Dorewar Crossbars

2.1 Matsalolin NBTI a cikin Lissafin Neuromorphic

Rashin Kwanciyar Hankali na Yanayin Zafi mara Kyau (NBTI) yana faruwa lokacin da cajin inganci ya zama kamar a kulle a iyakar oxide-semiconductor a ƙarƙashin ƙofar na'urorin CMOS a cikin da'irar neuron. Wannan al'amari yana bayyana a matsayin raguwar magudanar ruwa da transconductance, tare da ƙara kashe wutar lantarki da ƙarfin lantarki na bakin kofa.

Tsawon rai na na'urar CMOS saboda NBTI ana ƙididdige shi ta amfani da Matsakaicin Lokacin Gasa (MTTF):

$MTTF_{NBTI} = A \cdot V^{\gamma} \cdot e^{\frac{E_a}{KT}}$

Inda $A$ da $\gamma$ su ne masu alaƙa da kayan aiki, $E_a$ shine kuzarin kunnawa, $K$ shine akai na Boltzmann, $T$ shine zafin jiki, kuma $V$ shine ƙarfin lantarki na ƙofar gaba.

2.2 Hanyoyin Gazawar TDDB

Rushewar Dielectric na Lokaci (TDDB) tana wakiltar wata muhimmiyar matsalar amincin inda oxide ɗin ƙofa ya rushe bayan lokaci saboda matsin lantarki. A cikin crossbars na neuromorphic, TDDB yana haɓaka ta manyan filayen lantarki da ake buƙata don aikin NVM.

Tsarin tsawon rai na TDDB yana biye da:

$MTTF_{TDDB} = \tau_0 \cdot e^{\frac{G}{E_{ox}}}$

Inda $\tau_0$ akai ne na kayan aiki, $G$ shine ma'aunin haɓaka filin, kuma $E_{ox}$ shine filin lantarki a fadin oxide.

2.3 Haɗaɗɗen Tsarin Dorewa

Gabaɗayan amincin kayan aikin neuromorphic yana la'akari da hanyoyin gazawar NBTI da TDDB duka. Jimlar adadin gazawar yana biye da:

$\lambda_{total} = \lambda_{NBTI} + \lambda_{TDDB} = \frac{1}{MTTF_{NBTI}} + \frac{1}{MTTF_{TDDB}}$

3. Hanyar Gwaji

Tsarin gwajin mu yana kimanta dorewar tsawon rai ta amfani da ingantaccen tsarin neuromorphic na DYNAP-SE tare da sandunan guringuntsi na tushen PCM. Mun aiwatar da ma'auni da yawa na koyon na'ura ciki har da rarrabuwar lambobi MNIST da gane lambobi da aka faɗa don tantance tasirin amincin a ƙarƙashin ayyukan aiki na gaske.

Saitin gwaji ya haɗa da:

  • 28nm fasahar CMOS don da'irar neuron
  • Na'urorin guringuntsi na PCM tare da karatun karatu na 1.8V
  • Duba zafin jiki daga 25°C zuwa 85°C
  • Zamewa-magani tare da masu canjin aiki

4. Sakamako da Bincike

4.1 Cinikin Dorewa-Aiki

Sakamakonmu yana nuna ainihin ciniki-tsakanin amincin tsarin da aikin lissafi. Ci gaba da aiki a manyan ƙarfin lantarki yana ba da matsakaicin kayan aiki amma yana lalata dorewar tsawon rai. Gabatar da lokutan shimfiɗa na lokaci-lokaci yana haɓaka MTTF sosai yayin kiyaye matakan aiki masu karɓuwa.

Hoto na 1: Lalata da Maidowa Ƙarfin Lantarki na Bakin Kofa

Ginshiƙi yana nuna halayen damuwa da farfadowa na ƙarfin lantarki na bakin kofa na CMOS a ƙarƙashin yanayin canzawa mai ƙarfin lantarki (1.8V) da ƙaramin lantarki (1.2V). A lokutan matsanancin damuwa na ƙarfin lantarki, ƙarfin lantarki na bakin kofa yana ƙaruwa saboda NBTI, yayin da farfadowa ke faruwa a lokutan hutun ƙaramin lantarki. Lalatar net tana taruwa sama da zagayawa da yawa, a ƙarshe yana ƙayyade tsawon rai na na'ura.

4.2 Tasirin Shimfiɗa na Lokaci-Lokaci

Aiwatar da hanyar lissafi ta tsayawa-da-tafi tare da kashi 30% na aiki ya nuna haɓaka MTTF sau 3.2 idan aka kwatanta da ci gaba da aiki, tare da raguwar daidaiton rarrabuwa kawai 15% don ayyukan MNIST. Wannan hanyar tana daidaita matsalolin amincin da buƙatun lissafi yadda ya kamata.

5. Aiwar Fasaha

5.1 Tsarin Lissafi

Algorithm na tsarin lokaci mai sane da aminci yana haɓaka ciniki-tsakanin kayan aikin lissafi da tsufar da'ira. Matsalar haɓakawa za a iya tsara ta kamar haka:

$\max_{D} \quad \alpha \cdot Kayan aiki(D) + \beta \cdot MTTF(D)$

$batun \ zuwa: \quad D \in [0,1]$

Inda $D$ shine zagayen aiki, $\alpha$ da $\beta$ sune abubuwan auna maƙasudan aiki da aminci.

5.2 Aiwar Lamba

A ƙasa akwai sauƙaƙan pseudocode na aiwar mai tsara lokaci mai sane da aminci:

class MaiTsaraLokaciMaiSaneDaAminci:
    def __init__(self, matsakaicin_karfin_lantarki=1.8, mafi_karamin_karfin_lantarki=1.2):
        self.matsakaicin_v = matsakaicin_karfin_lantarki
        self.mafi_karamin_v = mafi_karamin_karfin_lantarki
        self.lokacin_damuwa = 0
        
    def tsara_aiki(self, aikin_lissafi, manufar_aminci):
        """Tsara lissafi tare da takurawa na aminci"""
        
        # Ƙididdige mafi kyawun zagaye na aiki bisa manufar aminci
        zagaye_na_aiki = self.lissafta_mafi_kyawun_zagaye_na_aiki(manufar_aminci)
        
        # Aiwar lissafi na tsayawa-da-tafi
        yayin da aikin_lissafi yana da_aiki():
            # Matakin lissafi mai ƙarfin lantarki
            self.aiwatar_karfin_lantarki(self.matsakaicin_v)
            lokacin_lissafi = zagaye_na_aiki * wannan.lokacin_quantum
            self.aiwatar_lissafi(aikin_lissafi, lokacin_lissafi)
            wannan.lokacin_damuwa += lokacin_lissafi
            
            # Matakin farfadowa mai ƙaramin lantarki
            self.aiwatar_karfin_lantarki(self.mafi_karamin_v)
            lokacin_farfadowa = (1 - zagaye_na_aiki) * wannan.lokacin_quantum
            lokaci.barci(lokacin_farfadowa)
            
    def lissafta_mafi_kyawun_zagaye_na_aiki(self, manufar_aminci):
        """Ƙididdige zagaye na aiki don cika buƙatun aminci"""
        # Aiwar algorithm na haɓakawa
        # la'akari da tsarin NBTI da TDDB
        dawo da ingantaccen_zagaye_na_aiki

6. Aikace-aikace da Jagorori na Gaba

Hanyar lissafin neuromorphic mai sane da aminci tana da muhimman tasiri ga tsarin AI na gefe, motocin cin gashin kansu, da na'urorin IoT inda amincin aiki na dogon lokaci yake da mahimmanci. Jagororin bincike na gaba sun haɗa da:

  • Gudanar da Aminci na Karbuwa: Daidaita sigogin aiki na ainihi bisa duban tsufa na ainihi-lokaci
  • Tsarin Sikelin Guda da Yawa: Haɗa tsarin amincin matakin na'ura tare da haɓaka aikin matakin tsarin
  • Fasahohin NVM Masu Tasowa: Binciken halayen aminci a cikin sabbin fasahohin ƙwaƙwalwar ajiya kamar ReRAM da MRAM
  • Koyon Na'ura don Aminci: Yin amfani da dabarun AI don hasashen da rage tasirin tsufa

Yayin da lissafin neuromorphic ke tafiya zuwa ga ɗaukar kowa a cikin aikace-aikacen mahimman aminci, hanyoyin ƙira masu sane da aminci za su zama mafi mahimmanci. Haɗa waɗannan dabarun tare da sabbin tsarin lissafi kamar lissafin cikin ƙwaƙwalwar ajiya da kusan lissafi yana ba da dama masu ban sha'awa don bincike na gaba.

7. Nassoshi

  1. M. Davies et al., "Loihi: Na'urar Lissafi ta Neuromorphic da Yawa tare da Koyo akan Guntu," IEEE Micro, 2018
  2. P. A. Merolla et al., "Da'irar haɗakar neuron miliyan ɗaya tare da cibiyar sadarwa mai iya faɗaɗawa da mu'amala," Kimiyya, 2014
  3. S. K. Esser et al., "Cibiyoyin sadarwa don sauri, lissafin neuromorphic mai ingantaccen kuzari," PNAS, 2016
  4. G. W. Burr et al., "Lissafin Neuromorphic ta amfani da ƙwaƙwalwar ajiya mara-sauƙi," Ci gaba a cikin Physics: X, 2017
  5. J. Zhu et al., "Kimantawa da Tsarin Amincin Tsarin Lissafin Neuromorphic," IEEE Transactions akan Kwamfutoci, 2020
  6. Dabarar Fasaha ta Duniya don Masu Rarraba Lantarki (ITRS), "Na'urorin Bincike masu Tasowa," 2015
  7. Y. LeCun, Y. Bengio, da G. Hinton, "Koyo mai zurfi," Yanayi, 2015

Bincike na Asali: Ƙalubalen Aminci a cikin Tsarin Neuromorphic na Gaba

Wannan bincike yana ba da gagarumin gudummawa ga fagen lissafin neuromorphic mai aminci ta hanyar magance matsalar matuƙar amincin kayan aiki na dogon lokaci wanda sau da yawa ake yin watsi da shi. Mayar da hankalin marubutan kan hanyoyin gazawar NBTI da TDDB yana da dacewa musamman idan aka yi la'akari da ƙaruwar amfani da tsarin neuromorphic a cikin lissafin gefe da aikace-aikacen IoT inda maye gurbin kayan aiki ba zai yiwu ba. Kamar yadda CycleGAN (Zhu et al., 2017) ya kawo sauyi ga fassarar hoto mara biyu ta hanyar gabatar da daidaiton zagayowar, wannan aikin yana gabatar da sauyin tsari na asali ta hanyar ɗaukar aminci a matsayin takurawar ƙira na farko maimakon bayan baya.

Hanyar lissafi ta tsayawa-da-tafi da aka gabatar tana da kamanceceniya mai ban sha'awa da tsarin jijiyoyin halitta, waɗanda suke haɗa lokutan hutu na halitta don kiyaye aikin dogon lokaci. Wannan hangen nesa na tunanin-rayuwa ya yi daidai da bincike na kwanan nan daga Aikin Kwakwalwar ɗan Adam, wanda ke jaddada mahimmancin fahimtar ka'idojin halitta don ƙirar tsarin lissafi masu ƙarfi. Tsarin lissafi na aminci ta amfani da ma'auni na MTTF yana ba da tushe na ƙididdiga wanda ke ba da damar bincike na tsari-tsakanin aiki da tsawon rai.

Idan aka kwatanta da hanyoyin aminci na gargajiya waɗanda suka fi mayar da hankali kan lahani na masana'anta ko kurakurai masu laushi, la'akarin wannan aikin na hanyoyin tsufa yana wakiltar mafi cikakkiyar hanyar haɓaka tsawon rai na tsarin. Haɗa ilimin kimiyyar na'ura tare da yanke shawara na tsarin gine-ginen yana daidaita da yanayin sauye-sauye a wasu yankuna na lissafi, kamar aikin Mittal et al. akan tsarin aminci na giciye- Layer don tsarin GPU. Duk da haka, ƙalubalen musamman na lissafin neuromorphic—musamman yanayin lissafin analog da kuma hankali ga bambance-bambancen na'ura—suna buƙatar hanyoyi na musamman kamar wanda aka gabatar a nan.

Idan aka duba gaba, wannan shugabanci na bincike yana da tasiri mai zurfi ga lissafi mai dorewa. Kamar yadda aka lura a cikin Dabarar Fasaha ta Duniya don Masu Rarraba Lantarki, matsalolin aminci suna zama mafi mahimmanci a manyan wuraren fasaha. Hanyar marubutan za a iya ƙaddara don magance wasu ƙalubalen aminci masu tasowa a cikin tsarin neuromorphic, kamar bambance-bambance a cikin na'urorin ƙwaƙwalwar ajiya ko sarrafa zafin jiki a cikin guntuwar neuromorphic mai haɗaka 3D. Wannan aikin ya kafa muhimmiyar tushe don haɓaka tsarin neuromorphic waɗanda zasu iya aiki da aminci tsawon shekaru da yawa a cikin ayyuka masu tsauri daga motocin cin gashin kansu zuwa dasa magunguna.